Mapping Theorem in 2 - Normed Space
نویسندگان
چکیده
In this paper, we give some properties of the sets Be(a, r) and Be[a, r]. This enables us to obtain a result analogue of “Open mapping theorem”for 2-normed space 2000 Mathematics Subject Classification: 41A65, 41A15.
منابع مشابه
A new perspective to the Mazur-Ulam problem in $2$-fuzzy $2$-normed linear spaces
In this paper, we introduce the concepts of $2$-isometry, collinearity, $2$%-Lipschitz mapping in $2$-fuzzy $2$-normed linear spaces. Also, we give anew generalization of the Mazur-Ulam theorem when $X$ is a $2$-fuzzy $2$%-normed linear space or $Im (X)$ is a fuzzy $2$-normed linear space, thatis, the Mazur-Ulam theorem holds, when the $2$-isometry mapped to a $2$%-fuzzy $2$-normed linear space...
متن کاملON FELBIN’S-TYPE FUZZY NORMED LINEAR SPACES AND FUZZY BOUNDED OPERATORS
In this note, we aim to present some properties of the space of all weakly fuzzy bounded linear operators, with the Bag and Samanta’s operator norm on Felbin’s-type fuzzy normed spaces. In particular, the completeness of this space is studied. By some counterexamples, it is shown that the inverse mapping theorem and the Banach-Steinhaus’s theorem, are not valid for this fuzzy setting. Also...
متن کاملSome Results on TVS-cone Normed Spaces and Algebraic Cone Metric Spaces
In this paper we introduce the cone bounded linear mapping and demonstrate a proof to show that the cone norm is continuous. Among other things, we prove the open mapping theorem and the closed graph theorem in TVS-cone normed spaces. We also show that under some restrictions on the cone, two cone norms are equivalent if and only if the topologies induced by them are the same. In the sequel, we...
متن کاملExistence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
متن کاملCone normed spaces
In this paper, we introduce the cone normed spaces and cone bounded linear mappings. Among other things, we prove the Baire category theorem and the Banach--Steinhaus theorem in cone normed spaces.
متن کامل